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Abstract The general connectivity index Rα(G) of a graph G is defined as∑
(uv)(dudv)

α , where uv is an edge of G, α ∈ R and α �= 0. In this paper, a formula is
given for computing the general connectivity indices Rα of catacondensed hexagonal
systems. We show that the general connectivity index Rα is monotone decreasing over
the number of inlets in the system. The catacondensed hexagonal systems with the first
up to the third extremal general connectivity indices are completely characterized.
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1 Introduction and notations

The connectivity index (now also called the branching index or the Randić index),
invented by the chemist M. Randić [20] in 1975, is the graph-based molecular struc-
ture descriptor that is most frequently applied in quantitative structure-property and
structure-activity studies [5,6,13,14]. For a simple undirected graph G = (V, E), its
connectivity index R(G) is defined as the sum over all edges of the graph of the terms
1/

√
dudv . That is,

R(G) =
∑

(u,v)∈E

1√
dudv

, (1)
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where u and v are the vertices incident with the respective edge (u, v) ∈ E and du

and dv are the degrees of the vertices u and v, respectively.
Later, in 1998 Bollobás and Erdös [2] generalized this index by replacing − 1

2 with
any real number α, which is called the general connectivity index or the general Randić
index.

Definition 1.1 For a simple undirected graph G = (V, E), the general connectivity
index Rα(G) of G is the sum of (dudv)

α over all edges (u, v) of G, i.e.,

Rα(G) =
∑

(u,v)∈E

(dudv)
α, (2)

where du and dv denote the degrees of the vertices u and v, respectively, and α is an
arbitrary real number not equal to 0.

There are many contributions on the general connectivity index Rα . See [1–3,11,
12,15–18]. Obviously, R− 1

2
(G) = R(G).

Throughout this paper, the following notations and terminology will be used. A
hexagonal system is a finite connected plane graph without cut vertices, in which
every interior face is bounded by a regular hexagon of side of length one. A hexag-
onal system with n hexagons is called an n-hexagonal system for short. Hexagonal
systems are of great importance for theoretical chemistry because they are the natural
graph representation of benzenoid hydrocarbons. A considerable amount of research
in mathematical chemistry has been devoted to hexagonal systems [7,9,10].

Suppose H is a hexagonal system. Denote by H(C) the graph whose vertex set
is the set of hexagons in H , and two vertices of which are adjacent in H(C) if the
corresponding hexagons have a common edge in H . The graph H(C) is called the
centroid-induced graph [21] or the dualist graph [4] of H . A hexagonal system with-
out internal vertex is called a catacondensed hexagonal system. Clearly the centroid-
induced graph of a catacondensed hexagonal system is a tree. A hexagonal system
is called a hexagonal chain, if its centroid-induced graph is a path. A vertex in H is
called a j -vertex if it has degree j in H . For a catacondensed hexagonal system H ,
a hexagon A of H is called a kink [4] if A has exactly two consecutive 2-vertices in
H , and A is called a branched hexagon [4] if A has no 2-vertex, i.e., the hexagon A
corresponds to a 3-vertex in H(C). An n-hexagonal chain with no kink is called a
linear hexagonal chain and is denoted by Ln . For the definitions, see Fig. 1.

The following definitions were introduced in [19]. If one goes along the perimeter of
a hexagonal system, then a fissure is a structural feature formed by a 2-vertex, followed
by a 3-vertex, followed by a 2-vertex. A simple bay is formed by a 2-vertex, followed
by two 3-vertices, followed by a 2-vertex. A cove and a fjord are features formed,
respectively, by three and four consecutive 3-vertices, lying between 2-vertices. See
Fig. 2.

The fissures, bays, coves, and fjords are called various types of inlets. The number
of inlets is defined as the sum of the numbers of the fissures, bays, coves, and fjords.

The extremal hexagonal systems with respect to some useful topological indices
in chemical applications have been extensively studied, and many results concerning
this topic can be found in [4,8,19,21–24].
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Fig. 1 Kinks, branched hexagons, a hexagonal chain and a linear hexagonal chain

Fig. 2 Bay, cove, fissure and fjord in a hexagonal system

In this paper, we are interested in the general connectivity index of catacondensed
hexagonal systems. A formula ((3) in Theorem 2.1) is obtained for computing the
general connectivity index of a catacondensed hexagonal system. Using this formula,
we find the extremal catacondensed hexagonal systems with the first three largest or
smallest general connectivity index. In fact, we can order all n-catacondensed hexag-
onal systems according to their general connectivity indices.

2 A formula for computing Rα

Our main result in this section is the following theorem.

Theorem 2.1 For an n-catacondensed hexagonal system H with l inlets, its general
connectivity index Rα(H) is equal to

Rα(H) = (3n − l − 3) × 9α + 2l × 6α + (2n − l + 4) × 4α. (3)
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Lemma 2.2 Let H be an n-catacondensed hexagonal system with k kinks, b branched
hexagons and l inlets. Then l + 3b + k = 2(n − 1).

Proof If one goes along the perimeter of H , then we can obtain a degree
sequence S of the vertices in H beginning with four 2s. For example, S =
2222323233232323233332 · · ·. The sequence S is of length 4n + 2 and the num-
ber of 3 in S is 2(n − 1). The edges one goes along are called outer edges. Every
subsequence in S without number 2 is called a block. There are four types of blocks:
3, 33, 333 and 3333. They correspond to fissures, bays, coves and fjords in H , respec-
tively. Obviously, the number of blocks is the number of inlets l. If the block is of
type 33, then it corresponds to a kink or an outer edge of a branched hexagon. If the
block is of type 333, then there are three cases: (1) it corresponds to two kinks; (2)
it corresponds to a kink and an outer edge of a branched hexagon; (3) it corresponds
to two outer edges of two branched hexagons. If the block is of type 3333, then there
are four cases: (1) it corresponds to three kinks; (2) it corresponds to two kinks and an
outer edge of a branched hexagon; (3) it corresponds to one kink and two outer edges
of two branched hexagons. (4) it corresponds to three outer edges of three branched
hexagons. We can replace every block in S in the following way. The first 3 in the block
is replaced by an inlet, the other 3 in the block are replaced by the corresponding kinks
or outer edges of branched hexagons. Because every branched hexagon has exactly
three outer edges, we can count the numbers of 3 in S by the numbers of inlets, kinks
and branched hexagons as l + 3b + k. The proof is completed. ��

Proof for Theorem 2.1 Let H be an n-catacondensed hexagonal system with l inlets,
k kinks and b branched hexagons. By Lemma 2.2, to prove (3), it is enough to prove

Rα(H) = (n + 3b + k − 1) × 9α + (4n − 6b − 2k − 4) × 6α

+ (3b + k + 6) × 4α. (4)

We will prove (4) by an induction on n.
If n = 1, then k = b = 0. The 1-hexagonal system H has its general connectivity

index Rα(H) = 6×4α = (1+0+0−1)×9α +(4−0−0−4)×6α +(0+0+6)×4α .
Suppose for n = j , we can use (4) to compute the general connectivity index of

any j-catacondensed hexagonal system. For n = j + 1, let H be a ( j + 1)-catacon-
densed hexagonal system with k kinks and b branched hexagons. Choose a hexagon
A that corresponds to a 1-vertex in the centroid-induced graph H(C). Suppose B is
the unique hexagon that has a common edge with A in H . Delete A from H . Then we
get a j-catacondensed hexagonal system H − A.

1. If B is a kink in H . Then the j-catacondensed hexagonal system H − A has k − 1
kinks and b branched hexagons. By induction hypothesis,

Rα(H − A) = ( j + 3b + k − 2) × 9α + (4 j − 6b − 2k − 2) × 6α

+ (3b + k + 5) × 4α.
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Then

Rα(H) = Rα(H − A) − 2 × 4α − 6α + 2 × 9α + 3 × 6α + 3 × 4α

= (( j + 1) + 3b + k − 1) × 9α + (4( j + 1) − 6b − 2k − 4) × 6α

+ (3b + k + 6) × 4α,

which satisfies (4).
2. If B is a branched hexagon in H . Then the j-catacondensed hexagonal system

H − A has k + 1 kinks and b − 1 branched hexagons. By induction hypothesis,

Rα(H − A) = ( j+3b+k − 3) × 9α+(4 j − 6b − 2k) × 6α + (3b + k+4) × 4α.

Then

Rα(H) = Rα(H − A) − 2 × 6α − 4α + 3 × 9α + 2 × 6α + 3 × 4α

= (( j + 1) + 3b + k − 1) × 9α + (4( j + 1) − 6b − 2k − 4) × 6α

+ (3b + k + 6) × 4α,

which satisfies (4).
3. If B is neither a kink nor a branched hexagon. Then the j-catacondensed hexagonal

system H − A has k kinks and b branched hexagons. By induction hypothesis,

Rα(H − A) = ( j + 3b + k − 1) × 9α + (4 j − 6b − 2k − 4) × 6α

+ (3b + k + 6) × 4α.

Then

Rα(H) = Rα(H − A) − 3 × 4α + 9α + 4 × 6α + 3 × 4α

= (( j + 1) + 3b + k − 1) × 9α + (4( j + 1) − 6b − 2k − 4) × 6α

+ (3b + k + 6) × 4α,

which satisfies (4).

Therefore, the result is true by the induction and the proof for Theorem 2.1 is com-
pleted. ��

J. Rada [19] gave the following formula for computing the connectivity index of
hexagonal systems.

Theorem 2.3 (Theorem 2 in [19]) Let H be a hexagonal system (not necessarily be
catacondensed) with m vertices and l inlets. Then

R(H) = m

2
− 5 − 2

√
6

6
l. (5)
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Fig. 3 The connectivity index R and the general connectivity index Rα

By substituting α = − 1
2 to (3), we have

R− 1
2
(H) = R(H) = 3n − l − 3

3
+ 2l√

6
+ 2n − l + 4

2
= 4n + 2

2
− 5 − 2

√
6

6
l,

which obviously satisfies (5) because an n-catacondensed hexagonal system H has
4n + 2 vertices.

Theorem 2 in [19] shows that the numbers of vertices and inlets in a hexagonal sys-
tem completely determine its connectivity index. But in general, it is not true for the
general connectivity index. For example, each of the hexagonal systems in Fig. 3 has
22 vertices and 6 inlets. They have the same connectivity index R, but quite different
general connectivity index Rα .

3 Extremal problem

Lemma 3.1 Suppose H and H ′ are two n-catacondensed hexagonal systems with l
and l ′ inlets, respectively. Then Rα(H) < Rα(H ′) for any real number α �= 0 if and
only if l > l ′.

Proof For (3), we have

Rα(H) = (3n − l − 3) × 9α + 2l × 6α + (2n − l + 4) × 4α

= (3n − 3) × 9α + (2n + 4) × 4α − l(3α − 2α)2.

So for any α �= 0, Rα(H) is strictly decreasing on the variable l. Thus Rα(H) <

Rα(H ′) if and only if l > l ′. ��
If fact, Lemma 3.1 can help us sort all n-catacondensed hexagonal systems accord-

ing to their general connectivity index Rα .

Theorem 3.2 For an n-catacondensed hexagonal system H(n ≥ 3), we have

1. Rα(H) ≥ (n − 1) × 9α + (4n − 4) × 6α + 6 × 4α , with equality if and only if
H = Ln;
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2. Rα(H) ≤ (n −1+	 3n−7
2 
)×9α + (4n −2	 3n−7

2 
−4)×6α + (	 3n−7
2 
+6)×4α ,

with equality if and only if H has � n−2
2 � branched hexagons and 	 n

2 −� n
2 �
 kinks.

Proof 1. By Lemma 2.2, for an n-catacondensed hexagonal system H , its inlets
number l ≤ 2(n − 1) and with equality if and only if H has no kink nor branched
hexagon. That is, H is the linear hexagonal chain Ln . Then by Lemma 3.1, we
have

Rα(H) ≥ (3n − 2(n − 1)− 3) × 9α + 2 × 2(n − 1) × 6α

+ (2n − 2(n − 1)+ 4) × 4α

= (n − 1) × 9α + (4n − 4) × 6α + 6 × 4α.

with equality if and only if H = Ln .
2. It is sufficient to prove

Rα(H) ≤
{ 5n−8

2 × 9α + (n + 2) × 6α + 3n+6
2 × 4α, if n is an even;

5n−9
2 × 9α + (n + 3) × 6α + 3n+5

2 × 4α, if n is an odd.

and with equality if and only if H has n−2
2 branched hexagons and 0 kink (if n is

an even) or H has n−3
2 branched hexagons and 1 kink (if n is an odd).

Suppose n is an even and H is an n-catacondensed hexagonal system with l inlets,
b branched hexagons and k kinks. H(C) is the centroid-induced graph of H .
Obviously, a branched hexagon and a kink in H correspond to a 3-vertex and a
2-vertex in H(C), respectively. Suppose there are u 2-vertices in H(C) that do
not correspond to kinks in H . Then there are n − b − k − u 1-vertices in H(C).
Since H(C) is a tree with n vertices, we have

(n − b − k − u) + 2(u + k) + 3b = 2(n − 1), (6)

which implies

b ≤ n − 2

2
,

with equality if and only if k = 0 and u = 0. Submit 3b + k + l = 2(n − 1)

(Lemma 2.2) to (6), we also have

l = n + u − b ≥ n − n − 2

2
= n + 2

2
, (7)

with equality if and only if u = 0 and b = n−2
2 .

Lemma 3.1, (3) and (7) imply

Rα(H) ≤ (3n − n + 2

2
− 3) × 9α + 2 × n + 2

2
× 6α + (2n − n + 2

2
+ 4) × 4α

= 5n − 8

2
× 9α + (n + 2) × 6α + 3n + 6

2
× 4α,
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Fig. 4 The extremal hexagonal systems with the smallest Rα and the largest Rα

with equality if and only if b = n−2
2 and k = 0.(u = 0 can be obtained from these

two conditions.) That means H has n−2
2 branched hexagons and 0 kink.

If n is an odd, the theorem can be proved similarly. ��
Example 3.3 Among all 12-catacondensed hexagonal systems, the two systems in
Fig. 4 have the smallest and the largest general connectivity index Rα(α �= 0), respec-
tively.

Analogously, the following results can be obtained. We omit their proof and leave
it for the reader.

Theorem 3.4 Among all n-catacondensed hexagonal systems, H has the second
smallest general connectivity index if and only if H has 1 kink and 0 branched hexa-
gon; H has the third smallest general connectivity index if and only if H has 2 kinks
and 0 branched hexagon.

Theorem 3.5 Among all n-catacondensed hexagonal systems(n ≥ 5), if n is even, H
has the second largest general connectivity index if and only if H has n−4

2 branched
hexagons and 2 kinks; if n is odd, H has the second largest general connectivity index
if and only if H has n−3

2 branched hexagons and 0 kink or H has n−5
2 branched

hexagons and 3 kinks.

Theorem 3.6 Among all n-catacondensed hexagonal systems(n ≥ 5), if n is even,
H has the 3rd largest general connectivity index if and only if H has n−4

2 branched
hexagons and 1 kink; if n is odd, H has the 3rd largest general connectivity index if
and only if H has n−5

2 branched hexagons and 2 kinks.
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